
Abstract: A possibility distribution is regarded as a knowledge representation. The measure of 

ignorance and fuzziness of a possibility distribution are defined by a normality factor and the 

area of a possibility distribution, respectively. A rule of combination of possibility distributions 

is given. Furthermore, possibilistic relational systems are represented as a joint possibility 

distribution of relationships between inputs and outputs.These challenging issues would be a 

part of evidence theory dealing with expert knowledge.

1 Introduction
The remarkable advance of computer techniques has brought about a present-day information age 

characterized by the acceleration, intellectualization and globalization of information, which has 

stimulated a more emergent requirement for dealing with the huge and sophisticated information in the 

real world. Knowledge representation and decision based on possibility theory is one of newly-emerging 

information techniques to intelligently deal with human knowledge for meeting such needs [2－3, 7, 10－
11]. 

Generally speaking the vagueness and ambiguity of human understanding, the ignorance of cognition 

and the diversity of evaluation are always contained in human knowledge. A possibility distribution is a 

kind of representation of knowledge and information where the center reflects the most possible case and 

the spread reflects the others with relatively low possibilities. 

This paper is devoted to the properties of exponential possibility distributions in which a rule of 

combination of distributions similar to Dempsterʼs rule [1] and fuzzy relation systems [8, 12－15] are 

considered. Since possibility distributions can be identified from numerical data associated with the 

possibility grades given by experts’ knowledge [4－5], a possibility distribution is regarded as a 

knowledge representation. The measure of ignorance and fuzziness of a possibility distribution are 

defined by a normality factor and the area of a possibility distribution, respectively. The measure of 

ignorance is similar to the weight of conflict by Shafer [9], and the measure of fuzziness is the same as 

one defined by Kaufman and Gupta [6]. Furthermore, possibilistic relational systems are represented as a 

joint possibility distribution of relationships between inputs and outputs. It could be said that these 

challenging issues would be a part of evidence theory dealing with expert knowledge. 
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The paper is organized as follows. In Section 2, the most common axiomatic characterizations of 

possibility theory and some basic properties of possibility and necessity measures are introduced. In 

Section 3, Combination rule of exponential possibility distributions are introduced. In Section 4, 

possibility relation systems are addressed. Finally, concluding remarks for this research are made in 

Section 5.

2 Preliminaries of possibility theory
Possibility theory is one of the current uncertainty theories devoted to handling of incomplete information 

in the real world. Possibility theory has some relation with probability measure and fuzzy measure.

Given a universal set X  and a v-field C  on X , probability measure f is the mapping as follows

　 : , ,f 0 1"C 6 @

that satisfy the following requirements:

(F1)  P 0=U^ h

(F2)  ;P 1=X^ h

(F3)  For any A i !C  and A j !C , if 

　　 , , , , ,A A i j i j P A P A1 2i j i
i

i
i1 1

"+ f!= = =U
3 3

= =
^ b ^h l h' !   (Additivity).

A fuzzy measure g is a mapping as follows

　 : ,g 0 1"C 6 @

that satisfies the following requirements:

(G1)  g 0=U^ h  ;

(G2)  g 1=X^ h  ;

(G3)  for all A and B!C , if BA 3 , then g A g B#^ ^h h (monotonicity).

It can be seen that fuzzy measure is a generalization of probability measure for dealing with the non-

additivity cases where the additivity is loosen to be monotonicity. Possibility theory is based on two dual 

fuzzy measures-possibility measure and necessity measure defined below.

A possibility measure, Pos, is a function

　 : ,Pos 0 1"C 6 @

that satisfies the following requirements:

(Pos1)  Pos 0=U^ h  ;

(Pos2)  Pos 1=X^ h  ;

(Pos3)  for any family ,A A i Ii i ! !C# -, where I  is an arbitrary index set, suppos A Pos Ai

i I i I
i=

! !
c ^m h' .

A necessity measure, Nec, is a function 

　 : ,Nec 0 1"C 6 @

that satisfies the following requirements

(Nec1)  Nec 0=U^ h  ;

(Nec2)  Nec 1=X^ h  ;
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(Nec3)  for any family ,A A i Ii i ! !C# -, where I  is an arbitrary index set, infA ANec Neci

i I i I
i=

! !
c ^m h( .

It can be seen that the possibility measure is the lower semicontinuous fuzzy measure (for any increasing 

sequence A A1 2 g3 3  of sets in C , if A i
i 1

!C
3

=
' , then lim g A Agi i i

i 1
="3

3

=
^ bh l' ) and the necessity 

measure is the upper semicontinuous fuzzy measure (for any decreasing sequence A A1 2 g4 4  of sets in 

C , if A i

i 1

!C
3

=

( , then lim g A g Ai i i
i 1

="3
3

=
^ bh l( ).

The dual relation between possibility measure and necessity measure holds as

　 Pos ANec A 1 c-=^ ^h h, (1)

which means that based on the formula (1), Giving either of the definitions of possibility measure and 

necessity measure can lead to the other. It is obvious that based on (1), (Pos1) and (Pos2) can lead to 

(Nec2) and (Nec1), respectively. Let us now check the case of A A i

i I

=
!

( . In this case, 

sup infPos A Pos A Pos A Pos A Pos A1 1 1 1 1c i

i I

c

i
c

i I i I
i
c

i I i
c- = - = - = - = -

! ! ! !
^ ce c _ _`h m o m i ij( '  holds from (Pos3), 

inf infPos A Nec A1
i I i

c

i I
i=

! !
_` ^ij h and Pos A Nec A1 c- =^ ^h h hold from (1) so that infNec A Nec Ai

i I i I
i=

! !
c ^m h(

 

that is (Nec3). Likewise, it is true that based on (1), (Nec1), (Nec2) and (Nec3) can lead to (Pos1), (Pos2) 

and (Pos3).

Definition 1.  Given a function 

　 : ,r X 0 1" 6 @, (2)

if

　 ,sup r x 1
x X

=
!

^ h
 (3)

then the function r is called the possibility distribution of X.

It can be seen that the possibility distribution characterizes the unique possibility and necessity measure 

via the following formulas

　 ,supPos A r x
x XA

=
! !C

^ ^
]

h h
g  (4)

　 ,supA r xNec 1
x A X

= -
! !C

^ ^
]

h h
g  (5)

　 .r x Pos x x A!=^ _h i" ,  (6)

Give a possibility distribution xAP ^ h and a fuzzy event (fuzzy set) B with the membership function 

xBn ^ h. The definitions of possibility and necessity measures of B based on xAP ^ h are as follows.

　 ,supB xxA A B
x

/= nP P^ ^ ^h h h# -  (7)

　 ,infB x xN 1A
x

A B0= - nP^ ^_ ^h hi h$ .  (8)

Similarly, the following dual relation between BAP ^ h and BN A ^ h holds
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　N B B1A A
c= -P^ ^h h. (9)

(9) can be easily understand from the following transformation.

　 supB x x1 1 1A
c

x
A B/- = - -nP P^ ^ ^_h h hi$ .

　　　　　　 ,inf infx x x x N B1 1 1
x

A B
x

A B A/ 0= - - = - =n nP P^ ^_ ^_ ^ ^h hi hi h h$ $. .  (10)

where a b a b1 1 1/ 0- = - -^ ^h h is used. 

Let X be a possibilistic variable governed by a possibility distribution Ar . Given an inequality relation

　 ,X z#  (11)

the possibility and necessity measures of X z#  denoted as Pos X z#^ h and X zNes #^ h, respectively, are 

obtained from (4) and (5) as follows:

　 ,supPos X z x x zA# #= r^ ^h h# -  (12)

　 > .supX z x x zNes 1 A# = - r^ ^h h# -  (13)

In the cases of Pos X z#^ h and X zNes #^ h, B is the crisp set , z3-_ @. 

3 Combination Rule of Exponential Possibility Distributions
An exponential possibility distribution is regarded as a representation of evidence, which is represented 

by an exponential function as follows:

　 ,expx x a D x aA
t

A= - - -P ^ ^ ^h h h$ .  (14)

where the evidence is denoted as A, a is a center vector and D A  is a symmetrical positive definite matrix. 

The parametric representation of A is written as follows

　 , .a DA A
e

1=P -
_ i  (15)

xAP ^ h is normal, that is, there is an x such that x 1A =P ^ h . Let us assume that Al is not normal. Thus, 

Al is given as

　 ,expx c x a D x aA
t

A= - - -P ^ ^ ^h h h$ .  (16)

where 0<c<1.

Definition 2.  Let a measure of ignorance of Al denoted as I Al^ h be defined by

　 .logI A c=-l^ h  (17)

It can be seen from Definition 2 that the possibility distribution given by (14) has no ignorance. Thus, 

given the evidence Al expressed by (16), Al should be normalized to obtain a normal possibility A with 

I A^ h, i.e.,

　 / ,x cx AA =PP l^ ^h h  (18)

　 .logI cA =-^ h  (19)

Thus, it should be noted that the given evidence Al is represented by xAP ^ h with I A^ h.

Definition 3.  Let a measure of fuzziness of A denoted as AH ^ h be defined as
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　 .expH A x a D x a dx
t

A- - -=

3

3

-

^ ^ ^h h h$#  (20)

The characteristic of an evidence A can be represented as

　 , , , .a D I A H AA
e

1-
_ ^ ^i h h& 0  (21)

Theorem 1.  AH ^ h can be rewritten as

　 ,H A D/
/

A
n 12

1 2

=r -^ h  (22)

Proof. Integrating a normal probability distribution from 3-  to 3+ , its value is one. Thus, we have

　 .H A D D2 2
/

/
/

/n
A

n
A

2
1 2

2 1
1 21

= =r r --
^ ^ ^h h h  (23)

Thus, (22) is proved. □

Let us denote a positive definite matrix D A  as >D 0A  and a semi-positive definite matrix D A  as 

D 0A $ . Also, D DA B$  means D D 0A B $- .

Theorem 2.  If >D D 0A B$ , 

　H A H B#^ ^h h, (24)

where ,A a D A
e

1= -
_ i  and ,DB b

e
B
1= -

_ i .

Proof.  If >D D 0A B$ , D DA B$  holds, and also >D D 0B A
1 1$- -  holds.  It follows from this fact that 

Theorem 2 holds. □

Let us define a combination rule of possibility distributions from a similar view to Dempsterʼs rule [1].

Definition 4.  Let A A1 25  denote the combination of possibility distributions ,A a D
e

1 1 1
1= -

_ i  and 

,A a D
e

1
2 2 2= -

_ i . Then the combination rule is defined as,

　A A k AA1 2 215 $= PP , (25)

where k is a normalizing factor such that

　 .maxA A 1
x

1 25 =  (26)

It is clear from Definition 2 that the measure of ignorance of A A1 25  is given by

　 ,logA AI k1 25 =^ h  (27)

which is similar to the measure of conflict defined by shafer [9]. Thus, I A A1 25^ h can be regarded as the 

measure of conflict between A1 and A2 .
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Theorem 3.  Let A A1 25  can be represented as

　 ,A A D D D a D a D D
e

1 2 1 2 1 1 2 2 1 2
1

5 = + + +
-

^ ^ ^` h h hj  (28)

Proof. In order to obtain xA A1 2P 5 ^ h, we must solve the optimization problem described in the left-hand 

side of (26). Thus, we have

　 .D a D ax D D*
1 1 2 21 2

1
+= +

-
^ ^h h  (29)

Substitute x *into (26), we have 

　 ,expk p 1- =# -  (30)

where 

　 .p D a D a D D D a D a a D a a D a
t t t

1 1 2 2 1 2
1

1 1 2 2 1 1 1 2 2 2= + + + + +
-

^ ^ ^h h h  (31)

Thus, we have 

　 ,expk p= # -  (32)

Substituting k into (25) yields (28). □
From (32), the measure of ignorance of A A1 25  can be written as

　 .I a D a a D a D a D a D D D a D aA A t t t

1 1 1 2 2 2 1 1 2 2 1 2
1

1 1 2 21 25 = + - + + +
-

^ ^ ^ ^h h h h  (33)

In general, the possibility distribution of A A n15 5g  can be obtained in the following theorem.

Theorem 4.  The combination of r possibility distributions A i , , ,i r1 f=  can  be represented as the 

following exponential possibility distribution.

　 , .A A D D a Di

i

r

i i

i

r

i

i

r

r

e

1

1 1 1

1

5 5g =
= = =

-

f ff p p p! ! !  (34)

The measure of ignorance of A A r15 5g  is 

　 .I A A D a D D aa D ar

i

r

i i

i

r

i

i

r

i i

i

r

i
t

i i

t

1

1 1 1

1

1

5 5g = -
= = =

-

=

^ f f fh p p p! ! ! !  (35)

It is easy to prove this theorem using the mathematical induction.  It follows from Definition 2 that 

I A A 0r15 5g $^ h . Thus, we have

　 .a D a D a D D a 0i
t

i i

i

r

i i

i

r
t

i

i

r

i i

i

r

1 1 1

1

1

$-
= = =

-

=

f f fp p p! ! ! !  (36)

It follows from Theorem 4 that

　 ,A A A A A A1 2 3 2 1 35 5 5 5=  (37)

　 ,I A A A I A A A1 2 3 2 1 35 5 5 5=^ ^h h  (38)

which show that the combination rule is unaffected by any permutation of A j .
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Theorem 5.  The measure of fuzziness of A A1 25  can be written as

　 A A D DH /
/

n
1 2

2
1 2

1
1 2

5 = +r
-

^ ^h h  (39)

and the following inequality holds:

　 , .A A A iH H 1 2i1 25 # =^ ^h h  (40)

It is clear from Theorems 1~3 that Theorem 5 holds.

Let us consider the following special cases.

1) The case where ,A a Di i
e

1= -
_ i , , ,i r1 f=  (the same center vectors)

　 , ,A A a D
, ,

r
i

i r
e

1
1

5 5g =
f=

c m!  (41)

　 ,A AI 0r15 5g =^ h  (42)

　 .H A A D/

/

r
n

i

i

r

1
2

1

1
1 2

5 5g =r
=

-

^ fh p!  (43)

2) The case where ,A a Di i
e

1= -_ i , , ,i r1 f=  (the same distribution matrices)

　 / , ,A A a r rD
, ,

r
i

i r
e

1
1

5 5g =
f=

c m!
 (44)

　 / ,I A A a D a a D a r
, ,

, , , ,
r i

t
i

i r

i

i r

i

i r

t

1

1
1 1

5 5g = -
f

f f
=

= =
^ c ch m m! ! !  (45)

　 .H A A Dr/ /
/

r
n n

1
2 2 1

1 2
5 5g =r -^ h  (46)

3) The case where ,A a Di
e

1= -_ i , , ,i r1 f=  (the same distributions)

　 , ,A A a rDr
e

15 5g =^ h  (47)

　 ,A AI 0r15 5g =^ h  (48)

　 .H A A r D/ /
/

r
r r

1
2 2 1

1 2
5 5g =r --^ h  (49)

In case 3), taking r "3 , we have lim H A A 0r r15 5g ="3 ^ h . Thus, the combined evidence 

A A r15 5g  supports the center a without ignorance and fuzziness as r "3.  This is similar to the law 

of large numbers in probability theory.

4 Possibility Relation Systems
Let a possibility relation R be represented as

　 , , ,expx y x r y r
D

D

D

D

x r

y r
R

t
t1 2

11

12

12

22

1

2
= - - -

-

-
P ^ ^ fh h p> H* 4  (50)

269



横浜経営研究　第29巻　第３号（2008）128（ 　  ）

where D11 and D12  are n n#  and n m#  matrices with n m$ , rank D m12 =6 @ , ,r r r
t

1 2=6 @  is a center 

vector and X and Y are input and output spaces, respectively. Setting

　 ,
D

D

D

D
D tR

11

12

12

22
=> H  (51)

it is assumed that >D 0R . The parametric representation of (50) is

　 ,R r D R
e

=^ h  . (52)

Given a possibilistic input vector ,A a D
e

A=^ h  and a possibility relation ,R r D R
e

=^ h , the possibilistic 

output ,DB b
e

B=^ h  can be defined by the extension principle as follows.

Definition 5.  Given a possibilistic input A and a possibility relation R, the possibility distribution of a 

possibilistic output vector is defined as

　 ,( ) ( ) ,max x yy k xB
x

A R$=P P P ^ h  (53)

where k is a normalized factor such that 

　 ( ) .max y 1
x

B =P  (54)

The equation (54) is called a possibility relation system. It follows from (53) and (54) that 

　 ( ) , / .max x y kx 1
x

RA $ =P P ^ h  (55)

Therefore, the measure of ignorance of B can be written as

　 /log logI B k k1=- =^ ^h h  . (56)

If I B 0=^ h , A and R are consistent, but if I B^ h is large, the obtained possibilistic vector B has lower 

reliability. 

Theorem 6.  Given a possibilistic input vector ,A a D
e

A=^ h  and a possibility relation ,R r D R
e

=^ h , the 

possibilistic output vector B can be written as

　 ,B L q L
e

1= -_ i
 , (57)

where 

　L D D D D Dt
A22 12 11

1
12= - +

-
^ h  , (58)

　 D rq D r D r D D D D a D rt t
A A 12 222 2 12 1 12 11

1
11 1 += + - + + +

-
^ ^h h . (59)

This theorem can be obtained by solving two optimization problems (53) and (54). >L 0 can be proved 

as follows. From >D 0A  and >D 0R , we have

　 >D
D D

D

D

D
0

A

t

11

12

12

22
=

+
> H  . (60)
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Then, setting

　 ,x D D D yA 11
1

12=- +
-

^ h  (61)

we have

　 , >D D D y y
D D D y

D D DD
y

y D D y 0A
A

A

t
t t

11
1

12
11

1
12

11
1

1222 12- +
- +

+= -
-

-
-

^`
^

f ^`h j
h

p h j  . (62)

The measure of ignorance of B can be represented as

logI B k a D a D q L q D a D r D r D D D a D r D rr rt
A

t t
A A AR

t1
11 1 12 2 11 11 1 12 2

1
= + - - + + + + += - -

^ ^ ^ ^h h h h. (63)

Let us consider three kinds of special cases to clarify the output B and I B^ h.

1) A crisp input x 0  :

　 , ,r D D x r DB
t

e
2 22

1
12

0
1 22= - -P - ^_ h i  (64)

　 .x r D D D x rI B D tt
0

1 12 22
1

12
0

111= - - --^ ^ _ ^h h i h  (65)

2) D 012=  (the case where x and y are independent) :

　 ,,r DB
e

2 22=P ^ h  (66)

　 I B a D a D r D a D r D D D a D rrt
A A A A

t
11 1 11 1 11

1
11 11= + - + + +

-
^ ^ ^ ^h h h h. (67)

3) a r1=  (the case where the center vector of possibilistic input is the same as the center vector with 

respect to x of the possibility relation R) :

　 , ,r LB
e

2=P ^ h  (68)

　 I B 0=^ h . (69)

Let two possibility relations on X Y#  and Y Z#  be denoted as ,x yAP ^ h and ,y zBP ^ h, respectively, 

which are possibility distributions on X Y#  and Y Z# . The possibility distribution , zxCP ^ h induced 

from ,x yAP ^ h and ,y zBP ^ h is defined as

　 ( ) ( , ) , ,, maxk x yx z y z
x

AC B$=P P P ^ h  (70)

where k is a normalizing factor such that

　 ( , ) .max x z 1
,x z

C =P  (71)

(70) is just an extension of (53). Denoting ,x yAP ^ h and ,y zBP ^ h as

　 , , ,expx y x a y a
A

A

A

A

x a

y a
A x y

t
t

x

y

11

12

12

22
- - -

-

-
=P ^ ^ fh h p> H*  (72)

　 , , ,exp a a
a

a

B

B

B
y z y z

B

y

z

t
B y z

y

z
t

11

12

12

22
= - - -

-

-
P ^ ^ fh h p> H*  (73)
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we can obtain , zxCP ^ h by solving two optimization problems (70) and (71) as

　 , , ,expx x c y c
C

C

C

C

x c

y c
z x y

t
t

x

z
C

11

12

12

22
= - - -

-

-
P ^ ^ fh h p> H* 4  (74)

where 

　 ,C A A A B A t
11 11 12 22 11

1

12= - +
-

^ h  (75)

　 ,C B A BB Bt
22 11

1
22 22 12 12= - +

-
^ h  (76)

　 ,C A A B B12 22
1

1212 22=- +
-

^ h  (77)

　 A a A a C C C bc C C C C x y
t

yx
t

11 12 12 22
1

1211 12 22
1

12

1

= + -- --
-

_ _i

　　　 ,C C B b C C C A A B rz
t

y12 22
1

22 12 22
1

12 12
1

22 11- -+ +- - -
_ ^i h h  (78)

　c C C C C B b B A b C C A at
x

t
z y x12 22

1
12

1

22 12 12 12
1

22 11 11= - + --
-

-
_ _i

　　　 ,C C A a C C A B A D rt
y

t t
y12

1
2 12

1
12 12 22 11

1

11 1 11- + - +- - -
_ ^i h h  (79)

　 .r A a B b A a B by y y
t

x22 11 12 12 2=- + + +  (80)

The matrix C ij7 A in (74) is positive definite because ,x z0 1C# #P ^ h  for all x and z due to (70).

5 Conclusion
In this paper, as a representation of evidence, an exponential possibility distribution is considered. The 

measure of ignorance and fuzziness of an exponential possibility distribution are defined by a normality 

factor and its area of a possibility distribution, respectively. The definition of the combination of 

possibility distributions is given. The possibility relational systems are represented as a joint possibility 

distribution of relationships between inputs and outputs. The rule of the combination of exponential 

possibility distributions and the exponential possibility of output vector in the possibility relational system 

are obtained by the optimization problem.
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