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Abstract: A possibility distribution is regarded as a knowledge representation. The measure of
ignorance and fuzziness of a possibility distribution are defined by a normality factor and the
area of a possibility distribution, respectively. A rule of combination of possibility distributions
is given. Furthermore, possibilistic relational systems are represented as a joint possibility
distribution of relationships between inputs and outputs.These challenging issues would be a

part of evidence theory dealing with expert knowledge.

1 Introduction

The remarkable advance of computer techniques has brought about a present-day information age
characterized by the acceleration, intellectualization and globalization of information, which has
stimulated a more emergent requirement for dealing with the huge and sophisticated information in the
real world. Knowledge representation and decision based on possibility theory is one of newly-emerging
information techniques to intelligently deal with human knowledge for meeting such needs [2—3, 7, 10 —
11].

Generally speaking the vagueness and ambiguity of human understanding, the ignorance of cognition
and the diversity of evaluation are always contained in human knowledge. A possibility distribution is a
kind of representation of knowledge and information where the center reflects the most possible case and
the spread reflects the others with relatively low possibilities.

This paper is devoted to the properties of exponential possibility distributions in which a rule of
combination of distributions similar to Dempster’s rule [1] and fuzzy relation systems [8, 12— 15] are
considered. Since possibility distributions can be identified from numerical data associated with the
possibility grades given by experts’ knowledge [4 — 5], a possibility distribution is regarded as a
knowledge representation. The measure of ignorance and fuzziness of a possibility distribution are
defined by a normality factor and the area of a possibility distribution, respectively. The measure of
ignorance is similar to the weight of conflict by Shafer [9], and the measure of fuzziness is the same as
one defined by Kaufman and Gupta [6]. Furthermore, possibilistic relational systems are represented as a
joint possibility distribution of relationships between inputs and outputs. It could be said that these

challenging issues would be a part of evidence theory dealing with expert knowledge.
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The paper is organized as follows. In Section 2, the most common axiomatic characterizations of
possibility theory and some basic properties of possibility and necessity measures are introduced. In
Section 3, Combination rule of exponential possibility distributions are introduced. In Section 4,
possibility relation systems are addressed. Finally, concluding remarks for this research are made in

Section 5.

2 Preliminaries of possibility theory
Possibility theory is one of the current uncertainty theories devoted to handling of incomplete information
in the real world. Possibility theory has some relation with probability measure and fuzzy measure.
Given a universal set 2 and a 0 -field I" on £, probability measure fis the mapping as follows
f:r—[0,1],
that satisfy the following requirements:
(F1) P(®)=0
(F2) P(Q)=1;
(F3) Forany Ai€l and A; €, if

AiNA=@(i#).i,j=1,2,...)~P (UZ}A;)=ZZ1P(A[) (Additivity).

A fuzzy measure g is a mapping as follows
g: I —[0,1]
that satisfies the following requirements:
(Gl) g(@)=0;
(G2) g(Q)=1;
(G3) forallAand BE T, if AC B, then g(A)<g(B) (monotonicity).

It can be seen that fuzzy measure is a generalization of probability measure for dealing with the non-
additivity cases where the additivity is loosen to be monotonicity. Possibility theory is based on two dual
fuzzy measures-possibility measure and necessity measure defined below.

A possibility measure, Pos, is a function
Pos:T"—[0,1]

that satisfies the following requirements:

(Posl) Pos(®)=0;

(Pos2) Pos(2)=1;

(Pos3) for any family {A,- |Aiel,ie 1}, where [ is an arbitrary index set, pos <LJ]Ai> =sup Pos (Aj).
e e
A necessity measure, Nec, is a function
Nec:T" —[0,1]
that satisfies the following requirements

(Necl) Nec(®)=0;
(Nec2) Nec(Q2)=1:
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(Nec3) for any family {A[ |Aiel,ie I}, where ] is an arbitrary index set, Nec <ﬂA’> = %Ielllc Nec (A)),

iel
It can be seen that the possibility measure is the lower semicontinuous fuzzy measure (for any increasing
sequence A1C A>C - of sets in I, if UZIAIEF, then lim,'_oog(A,-)Zg(U;A;)) and the necessity
measure is the upper semicontinuous fuzzy measure (for any decreasing sequence A12 A22--- of sets in

r,if ﬁAiel‘,then limi_ocg(Ai)Zg(m;;A,')).

i=l1

The dual relation between possibility measure and necessity measure holds as
Nec(A)=1—Pos(A°), 1)
which means that based on the formula (1), Giving either of the definitions of possibility measure and
necessity measure can lead to the other. It is obvious that based on (1), (Posl) and (Pos2) can lead to
(Nec2) and (Necl), respectively. Let us now check the case of A= ﬂ Ai. In this case,

iel

1—Pos (A°)=1—Pos ((ﬂAz)C):l—Pos <UA§)=1—S‘UP Pos (Af):inf<1—Pos (Af)) holds from (Pos3),
icl iel iel =

inf (1Pos(A))=inf Nec(A) and 1-Pos(A°)=Nec(4) hold from (1) so that Nec([)A1)=inf Nec(4)
e e ie e

that is (Nec3). Likewise, it is true that based on (1), (Necl), (Nec2) and (Nec3) can lead to (Pos1), (Pos2)
and (Pos3).

Definition 1. Given a function

r: X—[0,1], )
if
supr (x)=1, 3)

then the function r is called the possibility distribution of X.
It can be seen that the possibility distribution characterizes the unique possibility and necessity measure

via the following formulas

PostA= @
Nec(A)=1 ~ _sup 7 (x), 5)
r(x)=Pos ({x}) xeA. (6)

Give a possibility distribution IT4(x) and a fuzzy event (fuzzy set) B with the membership function

U5 (x). The definitions of possibility and necessity measures of B based on I 4 (x) are as follows.

g (B):sgp {4 () A s (x)}, @)

Na(B)=inf {(1=IT4(x))V s ()}, ®)

Similarly, the following dual relation between IT o (B) and N 1 (B) holds
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Na(B)=1-IT.(B°). )

(9) can be easily understand from the following transformation.

1-I4(B°)= 1—sgp{UA(x)/\<l—,UB(X)>}

=inf {1= 114 (x) A (1= 5 ()} = inf {(1= IT 4 () v 2 ()} = N (B), (10)

where 1—aAb=(1—a) Vv (1—b) is used.
Let X be a possibilistic variable governed by a possibility distribution 77 4. Given an inequality relation
X<z, (1D
the possibility and necessity measures of X <z denoted as Pos (X<z)and Nes(X <z), respectively, are
obtained from (4) and (5) as follows:
Pos (X <z)=sup{ma(x)|x<z}, 12)
Nes (X <z)=1—sup{ma(x)|x>z}. (13)
In the cases of Pos (X <z) and Nes (X <z), B is the crisp set (— oo, z].

3 Combination Rule of Exponential Possibility Distributions
An exponential possibility distribution is regarded as a representation of evidence, which is represented
by an exponential function as follows:

IT.(x)=exp {— (x—a)'Da (x—a)}, (14)
where the evidence is denoted as A, a is a center vector and D4 is a symmetrical positive definite matrix.

The parametric representation of A is written as follows

.=(a,D3)) (15)

E
IT 4 (x) is normal, that is, there is an x such that I 4 (x) =1. Let us assume that A’ is not normal. Thus,

A’ is given as
HA(x)zcexp{—(x—a)’DA(x—a)}, (16)

where O<c<I1.

Definition 2. Let a measure of ignorance of A’ denoted as / (A") be defined by
I1(A)=—logc. (17)
It can be seen from Definition 2 that the possibility distribution given by (14) has no ignorance. Thus,
given the evidence A" expressed by (16), A" should be normalized to obtain a normal possibility A with
I(A),ie.,
Ha(x)=I+(x)/c, (18)
I1(A)=—logc. (19)
Thus, it should be noted that the given evidence A’ is represented by 17 4 (x) with 7 (A).

Definition 3. Let a measure of fuzziness of A denoted as H (A) be defined as
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H(A)= fexp{—u—a)’m(x—a)dx. 20)

—x
The characteristic of an evidence A can be represented as

{(a.03) 1)1 (W)}, @1

Theorem 1. H (A) can be rewritten as

p;[" (22)

)

H(A)=7"?

Proof. Integrating a normal probability distribution from — oo to + oo, its value is one. Thus, we have

nl/2

HAW=02n)"|2Dy)™"

1/2
‘ :ﬂn/Z

D;l‘l/z. (23)

Thus, (22) is proved. L]

Let us denote a positive definite matrix Da as D4a>0 and a semi-positive definite matrix D4 as
Da=0.Also, Da=Ds means Da— D=0,

Theorem 2. If Da=D5p>0,
H(A)<H(B) (24)

where A=<a,D;])€ and B=(b,D;1)

e

Proof. If D> D3>0, |Dal = | Ds| holds, and also D'=D,'>0 holds. It follows from this fact that
Theorem 2 holds. L]

Let us define a combination rule of possibility distributions from a similar view to Dempster’s rule [1].

Definition 4. Let A, @® A, denote the combination of possibility distributions A1=(a1,Dfl)) and

A2=(a2,D;") . Then the combination rule is defined as,
A@Ar=klla- Il as, (25)

where k is a normalizing factor such that

m?XA1®A2=1. (26)

It is clear from Definition 2 that the measure of ignorance of A1® A: is given by
1(A1® Az)=logk, 27
which is similar to the measure of conflict defined by shafer [9]. Thus, / (A1® A2) can be regarded as the

measure of conflict between A1 and Ao.
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Theorem 3. Let A1® A2 can be represented as

MA@ A>=((Di+D2) " (Diai+D2ax),(Di+D>)) (28)

e

Proof. In order to obtain IT 41e4. (x), we must solve the optimization problem described in the left-hand
side of (26). Thus, we have

X*:(D1+D2)7](D101+Dza2). (29)
Substitute x “into (26), we have

kexp{-p}=1, (30)
where

p=(Diai+D: az)r(D1+D2)_l(D1a1+D2 a>)+a'Diai+ayD2ax. 3D

Thus, we have
k=exp{p}, (32)
Substituting k into (25) yields (28). ]

From (32), the measure of ignorance of A1® A2 can be written as

I(Ai®Ax)=a! Diai+ay D2a>—(Diai+ D2 az)[(DH-Dz)_l(DlaH-Dz as). (33)

In general, the possibility distribution of A1®---® A, can be obtained in the following theorem.
Theorem 4. The combination of r possibility distributions Ai, i=1,...,r can be represented as the
following exponential possibility distribution.
r by r
(ZD;) (ZD; m), ZD,‘
i=1 i=1 i=1

A®--@®A,= (34)

The measure of ignorance of A1®@---® A is

. -1

](A1®~-~®A,-)=ZajD,-ai—(iDiai) (20;) (Zr:D,-a,'). (35)
i=1 i=1 i=1

i=1

It is easy to prove this theorem using the mathematical induction. It follows from Definition 2 that
I(A1®---®A,)>0. Thus, we have

-1

EG;Diai_<2Dia[) (ED,’) (iDia[)ZO. 36)
i1 i=1 i=1 i1

It follows from Theorem 4 that
AIQDAIDA3=A DA D A3, 37
I(AA®ADA)=T(A2®A @ A3), (38)

which show that the combination rule is unaffected by any permutation of A ;.
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Theorem 5. The measure of fuzziness of A1® A2 can be written as

172

H(A@A)=2"|(Di+ D)

and the following inequality holds:
H(AI®A)<H(A) i=1,2.
It is clear from Theorems 1~3 that Theorem 5 holds.
Let us consider the following special cases.
1) The case where Ai= (a, Dfl) si=lor (the same center vectors)
A1®-~-®Ar=<a7_ ZD:') i

I1(A®---®A,)=0,

H(A®--®A)=n"?

2) The case where A;= (ai ,D “) ,i1=1,...,r (the same distribution matrices)

A]@"'@Ar=< Za;/r,rD) ,

1(A1®---®A,)=_:Za;Da,-—(_:Zaf)IDQ Zaf>/r,

I.... r

1/2

H(A@@®A )= D"

3) The case where A;= (a, D’l) , i=1,...,r (the same distributions)

A®---®A,=(a,rD)

I(Ai®---®A,)=0,

7l|“2.

HA® - ®A)=n"2r"|D

(269) 127

(39)

(40)

(41

(42)

(43)

(44)

(45)

(46)

“47)
(48)

49)

In case 3), taking 7 — oo, we have lim,-o H(A1®---®A,)=0. Thus, the combined evidence

A1@---® Ar supports the center a without ignorance and fuzziness as 7 —oo. This is similar to the law

of large numbers in probability theory.

4 Possibility Relation Systems

Let a possibility relation R be represented as

_ A Du D
HR(x,y)—exp{—(x—rl,y—rz) [qu Do

il

(50)
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. . .
where D11 and D1, are nXn and nXm matrices with n=m, rank[D2]=m, r=[ri,r2] is a center

vector and X and Y are input and output spaces, respectively. Setting

D D
= 51
Dz [Diz Dzz]’ b

it is assumed that D& > 0. The parametric representation of (50) is
R=(r.Ds) (52)
Given a possibilistic input vector A=(a, DA)F and a possibility relation R = (r, DR)e, the possibilistic

output B= (b, DB)E can be defined by the extension principle as follows.
Definition 5. Given a possibilistic input A and a possibility relation R, the possibility distribution of a
possibilistic output vector is defined as

Hg(y)kaXaxHA(x)~HR(x,y), (53)
where k is a normalized factor such that

max Iz(y)=1. (54)
The equation (54) is called a possibility relation system. It follows from (53) and (54) that

mXaxHA(x)'HR(x,y) =1/k. (55)
Therefore, the measure of ignorance of B can be written as

1(B)=—log(1/k)=logk (56)
If 7(B)=0, A and R are consistent, but if 7 (B) is large, the obtained possibilistic vector B has lower

reliability.

Theorem 6. Given a possibilistic input vector A=(a.D4) and a possibility relation R =(r,Dx) | the

e

possibilistic output vector B can be written as

B=(Lq.L) 57)
where
L:DZZ_D:Q(DAJI‘DH)_IDIZ , (58)
g=Dnr+D},r1i—D},(Da +Du)  (Daa+Dir++Dir) ) (59)

This theorem can be obtained by solving two optimization problems (53) and (54). L>0 can be proved

as follows. From D4>0 and D >0, we have

60
D, Dn (€0)

Da+Dn DIZ]
>
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Then, setting

X=_(DA+D11)71D12)’, (61)
we have
— 1 —_ -1 —
(—(D,/H-Dn) lDlzy,y) D (Da+Dn) Duy =yf(D22—D;2(DA+D11) lD12)y>0 (62)
y .

The measure of ignorance of B can be represented as
1 (B)=logk=a’DAa+r’DRr—q‘L*Iq—(DAa+D11r1+D12rz)t(DA+D11)71(D,4a+D11r1+D12r2). (63)

Let us consider three kinds of special cases to clarify the output B and 7 (B).

1) A crisp input x° :

M 5=(r2— D3} DL, (x°— 1), D) (64)

1(B)=(x"—r)" (Du=Dn D3I D) (xO—r). (65)
2) D12=0 (the case where x and y are independent) :

I5=(r2,D2n) , (66)

I(B)= a’DACH-I’iDl1r1—(DACH-D11r1)(DA-‘rD11)7l (Daa+Dur). (67)

3) a=n (the case where the center vector of possibilistic input is the same as the center vector with

respect to x of the possibility relation R) :
Ma=(r..L) , (68)

1(B)=0. (69)

Let two possibility relations on X XY and ¥ X Z be denoted as IT(x,y) and IT5(y,z), respectively,

which are possibility distributions on X XY and Y X Z. The possibility distribution IT¢ (x,z) induced
from 74 (x,y) and 1 5(y, z) is defined as

e (x,2)=kmax I a(x,y)- 1T s(y.2), (70)
where k is a normalizing factor such that
max [Tc (x,2)=1. (71)

(70) is just an extension of (53). Denoting 17 4 (x, y) and I15(y,z) as
X —dx
y=ay)’ (72)

y—ay
7—a.)’ (73)

An An

_ _ _ _ t
HA(x,y)—exp« (x—ax,y—ay) Al An

_ | B B2
Hg(y,z)—exp{—(y—ay,z—az) [Biz B
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we can obtain I1 ¢ (x, z) by solving two optimization problems (70) and (71) as

Hc(x,z)=exp{—(x—cmy—c.v)t o (’;iij)}, (74)
where

Cu=An—An(An+Bu) " AL, (75)

Cu=Bn—B,(An+Bu)" B, (76)

Cio=—An(An+B»)" Bu, (77)

107! R Vall
c:=(Cu—=CnCiCL) (Anas+Ana,—CnCyClby
_CIZC;zlB22bz+<C12C;21CiZ_AIZ)(A22+Bll)7ll"y), (78)
t -1 -1 t -1
Cz=(C22—C12C22C12> (BZbe+Blel2by—C12C“Alla,\'
—CiZCfllA1zay+(C§2C1]lA12—Biz)(A22+D11)_lr_v), (79)

ry=—Axnay+Buby+A,a:+Bub:. (80)

The matrix [C ij] in (74) is positive definite because 0 < IT ¢ (x,z) <1 for all x and z due to (70).

5

Conclusion

In this paper, as a representation of evidence, an exponential possibility distribution is considered. The

measure of ignorance and fuzziness of an exponential possibility distribution are defined by a normality

factor and its area of a possibility distribution, respectively. The definition of the combination of

possibility distributions is given. The possibility relational systems are represented as a joint possibility

distribution of relationships between inputs and outputs. The rule of the combination of exponential

possibility distributions and the exponential possibility of output vector in the possibility relational system

are obtained by the optimization problem.
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