
Abstract: We introduce a class of discrete convolution concave functions and show that these 

new functions share several fundamental properties with continuous concave functions, but also 

exhibit marked differences as well. These new functions generalize gross substitutes utility 

functions of Kelso and Crawford (1982), valuated matroids of Dress and Wenzel (1992), 

M
#
-concave functions of Murota and  Shioura (1999), and GM-concave functions of Sun and 

Yang (2006).

Keywords: Discrete optimzation, convolution concavity, discrete separation, equilibrium, 
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1 Introduction
Convexity plays a central role in the study of optimization problems in engineering, management and 

economics. Ordinary convex functions have been shown to exhibit many interesting properties, see e.g., 

Rockafellar (1970). Unfortunately, a simple analogy of convex function does not work any more when the 

variables take only integer values. In the literature, a great deal of research has been done to identify 

discrete functions which have nice properties as enjoyed by ordinary convex functions. For instance, 

Frank (1982) established the first discrete separation theorem for submodular set functions. Kelso and 

Crawford (1982) introduced the gross substitutes condition for the utility functions in an exchange 

economy with indivisible goods and proved the existence of a Walrasian equilibrium under the condition. 

Lovász (1983) demonstrated a close relationship between submodularity and convexity. Camerini et al. 
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(1989) introduced the class of quasi-separable convex functions and proposed a greedy algorithm for 

those functions. Favati and Tardella (1990) introduced the class of discrete midpoint convex functions and 

proved that local minimality leads to global minimality for those functions. Dress and Wenzel (1992) 

formulated the concept of valuated matroid and investigated its various properties. Murota (1996) 

generalized the valuated matroid to the lattice of integers and showed several interesting properties of this 

generalization. Murota and Shioura (1999) extended this generalization further and called this extension 

an M
#
-concave function. Sun and Yang (2004) introduced the class of convolution concave functions 

further generalizing  M
#
-concave functions and illustrated the application of this class of utility functions 

in equilibrium models with indivisibilities. Extending M
#
-concave functions, Sun and Yang (2006) 

proposed  the class of GM-concave functions as new examples of convolution concave functions and  

generalized  the well-known gross substitutes condition to the gross substitutes and complements 

condition and proved the existence of a Walrasian equilibrium under the condition.

The purpose of this paper is to introduce  a number of natural classes of convolution concave functions. 

In particular, we show that these new classes of convolution concave functions preserve several 

fundamental properties of valuated matroids and M
#
-concave functions such as (1) local optimality 

implies global optimality; (2) discrete separation; (3) the convolution concavity property. While our 

generalizations  and valuated matroids, M
#
-concave functions have several properties in common, there is 

also a marked difference in  that any M
#
-concave function must be submodular but our generalizations 

need not be submodular nor supermodular. In economic terms, if a consumer has an M
#
-concave function 

as her utility over n  types of indivisible goods, then the consumer actually regards all the goods as 

substitutes in the sense of Kelso and Crawford (1982) (see Fujishige and Yang (2003), Murota (2003)). 

Substitutes exclude complements. In many important economic environments, complements and 

substitutes are often jointly observed, such as workers and machines, tables and chairs, computers and 

software packages.  The existing theory of discrete convex analysis, however,  cannot handle such 

complex and also realistic situations. Our generalizations are so general and so interesting that they can 

cope with the mentioned complex situations and also include the typical pattern of substitutability and 

complementarity among goods as studied by Sun and Yang (2006) (see also Milgrom (2007)), as special 

cases.

2 Main Results
Let I k  denote  the set of the first k  positive integers. The set IRn denotes the n-dimensional Euclidean 

space and Z| n the  set of all integer lattice points in IRn. The vector 0 denotes the vector of zeros. The 

vector e i^ h, i I n! , is the i th unit vector of IRn. Furthermore,  x · y means the inner product of vectors x 

and y. Given x, y ! IRn, define

　 , , , , , ,, , , .max max min minx y x y x y x y x y x yn nn n1 1 1 10 / gg= =_ _i i# # # #- - - -

Given a function  f : Z| n "  IRn , !3" ,, define the effective domain of  f  by

　dom f x!=^ h "  Z| n is finitef x^ h ,.
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We assume that the effective domain, dom f^ h, is not empty for any function f  under consideration.

A function  f : Z| n "  IR , 3-! + is said to be discrete concave if, for all points , , ,x x x l1 2 g  in  Z| n with 

all  convex parameters , , , l1 2 gm m m  satisfying xh
h

h

l

1
!m

=
!  Z| n, it holds

　 .f x f xh
h

h

l

h
h

h

l

1 1

$m m
= =

f ^p h! !

A function  f : Z| n "  IR , 3+" , is said to be discrete convex if f-  is discrete concave. Note that if a 

function  f : IRn "  IR , 3-! + is a concave function, its restriction on the integer lattice Z| n is obviously 

discrete concave.

A function  f : Z| n "  IR , 3+" , is said to be submodular if

　 , ,x yf x f y f x y f x y/ 0 6$ !+ +^ ^ ^ ^h h h h  Z| n.

A function  f : Z| n "  IR , 3-! + is said to be supermodular if f-  is submodular. 

Let f 1 and f 2  be functions  mapping from Z| n to IR , 3-! +. Define f f1 25  : Z| n "  IR , 3-! + by

, ,sup f x f xf f x x x x x x1
1

2
2

1 2
1 2 1 25 !+= + =^ ^ ^h h h#  Z| n ,-

provided that the supremum is not equal to 3+ .

Definition 2.1　　A class :F f f=$ Z| n "  IR , 3-! +- of functions is said to be convolution concave if 

the following conditions are satisfied:

(i)  For every ,Ff f!  is discrete concave;

(ii) For every f  and g  in F , we also have f g5  in F .

Definition (i) is fairly standard and general. Definition (ii) states that the class of functions under 

consideration is  closed under the supremum convolution operation. If F  is a class of convolution 

concave functions, then Fg f f != -$ . is called a class of convolution convex functions. The notion of 

convolution concavity was introduced in Sun and Yang (2004) and motivated from a study on the 

existence of a Walrasian equilibrium.

One can analogously define the above concepts for the continuous case. In this case, we have the 

following simple lemma; see Rockafellar (1970).

Lemma 2.2　　If f i  : IRn "  IR , 3-! +, ,i 1 2= , are concave, then the function f f1 25  is also concave 

provided f f1 25  does not take the value 3+ .

Let :F f f=$  IRn "  IR , 3-! + is concave and bounded from above -. Then, it follows from Lemma 

2.2 that F  is convolution concave. Thus, in the continuous case, the class of all concave functions is 

essentially convolution concave. Unfortunately, in the discrete case, even if f i  : Z| n "  IR , 3-! +, are 

concave, their convolution function f f1 25  need not be concave. This is a crucial difference between 

continuous concave functions and discrete concave functions. To preserve the convolution concavity in 

the discrete case, one needs to take combinatorial or discrete nature of discrete functions into account. In 
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the following we will introduce a number of natural classes of convolution concave functions.

Given x ! IRn, define supp >x k I x 0n k!=+^ h # - and <supp x k I x 0n k!=-^ h # -. An n n#  matrix U  

is said to be unimodular if U is integral and has determinant 1! . Note that U 1-  is also unimodular if U  is 

unimodular. The identity matrix I  is the simplest unimodular matrix. Let U  denote the family of all n n#  

unimodular matrices.

Definition 2.3　　Given an n n#  unimodular matrix U , a function f :  Z| n "  IR , 3-! + is said to be  a 

GM(U)-concave function if for , dom fx y ! ^ h and suppk U x y! -+ ^_ hi, it  satisfies

,

.

max

max

f x U e k f y U e k

f x U e k U e k e l

f x f y

e l f ysuppl U x y

1 1

1 1

# - + +

- -

+

- + +!

-

-
- -

-

-

^ ^

^_ ^_

^ ^_` ^ ^_`^_

h h

hi hi

h hij h hijhi

8

D% /

Note 1: A GM(U)-concave function coincides with an M
#
-concave function of Murota and Shioura 

(1999) if U  is the identity matrix. An M
#
-concave function is a generalization of an M-concave function 

of Murota (1996), which in turn is a generalization of a valuated matroid of Dress and Wenzel (1992). 

Clearly, the class of GM U^ h-concave functions is substantially and strictly larger than that of M
#
-concave 

functions. As shown in Fujishige and Yang (2003), Murota (2003), there is an equivalence between 

M
#
-concavity and the well-known gross substitutes of Kelso and Crawford (1982). This means that if a 

consumer has an M
#
-concave utility function over n  types of indivisible goods, then she views all goods 

as substitutes. A simple example is tables which have the same function for the consumer but may be 

different in quality.

Note 2: Let ,S S1 2^ h be a partition of the set I n . Let a unimodular matrix U  be given by 

, ; , SU e i i S e i i 21 !!= -^ ^h h7 A. With respect to this unimodular matrix U , a GM(U)-concave function 

coincides with a GM concave function of Sun and Yang (2006). In this case, as shown in Sun and Yang 

(2006), if a consumer has a GM concave utility function over n  types of indivisible goods, then the 

consumer regards the goods of types in each set S i  as substitutes but the goods across S1 and S 2  as 

complements. A simple example is tables and chairs. The consumer sees tables (chairs) as substitutes but 

tables and chairs as complements. Even in this relatively simple case, the GM(U)-concave functions 

capture the essence of some fundamental economic phenomena beyond what the class of M
#
-concave 

functions can deal with.

It is known from Murota (2003) and Fujishige (2005) that every M
#
-concave function must be 

submodular. The following lemma shows, however,  that a GM(U)-concave function need not be 

submodular nor supermodular.

Lemma 2.4　　For any UU !  not being the identity matrix, a GM(U)-concave function is not necessarily 

submodular nor supermodular and thus need not be M #-concave.

Proof:  Consider the function g : IR "  IR given by xg x =-^ h . Clearly, g  is concave. Then define  f : Z| 3 

"  IR by f x x x x1 2 3=- - +^ h . It can be shown  that f  is GM(U)-concave with , ,e eU e 2 31 -= ^ ^ ^h h h7 A

. First consider the points , ,x 1 0 01=^ h and , ,x 00 12=^ h. Then we have
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　 < , , , , .f x f x x f x x ff x f2 1 1 0 0 0 0 01 2 1 221 0 /+ =- + = + =^ ^ ^ ^ ^ ^h h h h h h

Thus, f  is not submodular and so f  is not M
#
-concave.

Next consider the points ,,y 1 0 11= -^ h and , ,y 1 102= -^ h. Then we have

　 , , , , .>f f y f y y f y y f fy 1 00 0 1 1 1 41 1 12 2 20 /+ = + = + =- - -_ _ _ _ ^ ^i i i i h h

Thus, f  is not supermodular.  □
The next result shows that GM U^ h-concave functions and M

#
-concave functions are unimodularly 

convertible, and also gives a way of constructing a GM(U)-concave function from any given M
#
-concave 

function and any given unimodular matrix.

Lemma 2.5　　(1) For a given UU ! , let f : Z| n "  IR , 3-! + be a GM(U)-concave function. Then the 

function  F : Z| n "  IR , 3-! + defined by F x f U x1= -^ ^h h is M #-concave.

(2) Let  f : Z| n "  IR , 3-! + be an M #-concave function.

Then, for any UU !  the function F : Z| n "  IR , 3-! + defined by F x f Ux=^ ^h h is GM(U)-concave.

Proof:  (1) Let us first note the fact that the inverse matrix of a unimodular matrix is also a unimodular 

matrix. For any pair x  and dom Fy ! ^ h, let ,x U x y U y1 1= =- -l l , and suppk x y! -+^ h. Then we have 

,x Ux y Uy= =l l, and k supp U x y! -+ l l_` ij. Thus, we obtain that 

,

,

,

.

max

max

max

max

max

max

x y f U f

f x U e k f y U e k

f x U e k e l f y U e k e l

f U x e f U e k

f U x e k e l f U e k e l

x e k F e k

x e k e l F e k e l

f U x f xF F y y

k y

y

F y

F y

l supp U y

l supp U x y

l supp x y

x

1

1 1

1 1

1 1

1 1

1

#

+

- + +

- - + + -

- + -

- + -

= - +

- + +

= + = +

=

+ -
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+ -

!

!

!

-

- -
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- -
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-
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l l

l ll l

l l

^ ^ ^ _ ^ _

^_ ^_

^ ^_` ^ ^_`

^_` ^_`

^ ^_` ^ ^_`

^_ ^_

^ ^_ ^ ^_
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h h h i h i
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h hij h hij
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D
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.

Therefore, the function F x f U x1= -^ ^h h is M
#
-concave.

In a similar way we can prove Part (2). □

The following result gives yet another way of constructing GM(U)-concave functions.

Lemma 2.6　　Let f : IR "  IR , 3-! + be  any concave function and U  be any n n#  unimodular 

matrix. Then the function F : Z| n "  IR , 3-! + given by F x f U xk
k

n

1
$=

=
^ ah k!  is GM(U)-concave, where 

U k  is the kth row of U .

Now we will show that  GM(U)-concave functions possess  the following three fundamental and 

interesting properties as M
#
-concave functions have. But the submodularity of M

#
-concave functions 

cannot be preserved  by GM(U)-concave functions, as has been shown in  Lemma 2.4.
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Theorem 2.7　　
(1)  If f i  : Z| n "  IR , 3-! + , ,i 1 2= , are GM(U)-concave functions, then the function f f1 25  is also 

GM(U)-concave provided f f1 25  does not take the value 3+ .

(2)  If  f : Z| n "  IR , 3-! + is GM(U)-concave, f  is discrete concave.

(3)  Let  f : Z| n "  Z| , 3-! + be a GM(U)-concave function and  g : Z| n "  Z| , 3+" ,  be a GM(U)-convex 

function such that dom domf g+ !^ ^h h 0. If f x g x#^ ^h h for every x ! Z| n, there exist *!a  Z| and p *! 

Z| n such that

　 f x p x g x* * $# #+a^ ^h h

for every x ! Z| n.

Proof:  We give a proof for Part (1). Let F x f U xi i
1= -^ ^h h for ,i 1 2= . Then by Lemma 2.5 we see that 

each Fi  is M
#
-concave as a function defined Z| n "  IR , 3-! +. Note that 

　 , ,sup F x F x x x x x xF F x 1
1

2
2 1 2 1 2

1 25 !+ + ==^ ^ ^h h h$  Z| n
-

　 , ,sup U x f U x x x x x xf 1 1 1 1 2 1 2
2

2
1 != + + =- -^ ^h h$  Z| n

-

　 , ,sup f U x f U x U x U x U x U x U x1
1 1

2
1 2 1 1 1 2 1 1 1 1 2!= + + =- - - - - - -^ ^h h$  Z| n

-

　 , ,sup f f y U x y yy y y1 2
1 12 211 2 != + + = -_ _i i$  Z| n

-

　 .f f U x1 2
15= -^ h

Conversely, we also have 

　 .f f x F F Ux1 2 1 25 5=^ ^h h

Note that <f f1 25 3+  implies <FF 215 3+ . Now it follows from Theorem 6.15 (1) of Murota (2003) 

that F F1 25  is also M
#
-concave. Finally, it follows from f f x F F Ux1 2 1 25 5=^ ^h h and Lemma 2.5 that 

f f1 25  is also GM(U)-concave. 

Parts (2) and (3) can be proved similarly. Precisely, Part (2) follows from Lemma 2.5 and Theorem 

6.42 of Murota (2003). Part (3) follows from Lemma 2.5 and Theorem 8.15 of Murota (2003). □

Now it follows from Theorem 2.7 (1) and (2) that for any given UU ! , 

　 :F f f=$  Z| n "  IR , 3-! + is GM(U)-concave and bounded from above -

is a class of convolution concave functions.

We also see that the global optimality of a GM(U)-concave function is guaranteed by the local 

optimality.
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Theorem 2.8　　For a GM(U)-concave function f  and a point domx f! ^ h, 

　 yf x f y 6 !$^ ^ ^h h  Z| n , ,

.f x f x U e k k N

f x f x U e k e l k l N
1

1

,
! 6

6

$ !

$ !+ -
-

-^ ^ ^_` ^

^ ^_ ^
i

h h hij h

h hi h
*

Proof:  Let F y f U y1= -^ _h i. Then by Lemma 2.5 we see that F  is M
#
-concave as a function mapping 

from  Z| n to IR , 3-! +. And we have y U yf F=^ ^h h. Therefore, it follows from Theorem 6.26 of Murota 

(2003) that 

　 U x y yF F 6$ !^ ^ ^h h  Z| n , ,

.

U x U x e k e l k l N

U x U x e k k N

F F

F F
,

!

6

6

$ !

$ !

+ -^ ^ ^_ ^

^ ^_ ^
i

h h hi h

h hi h
*

That is, 

　 yf x f y 6 !$^ ^ ^h h  Z| n f x f U y k1, 6$ !-^ _ ^i h i  Z| n
i

　　　　　　　　　　　　

, ,

.

f x f x U e k e l k l N

f x f x U e k k N

1

1
,

!

6

6

$ !

$ !

+ --

-

^ ^ ^_` ^

^ ^_ ^

h h hij h

h hi h
*

 □

We wrap up this paper with an economically meaninful example. Following Shapley (1962), we 

consider an optimal assignment problem. A firm has a set S  of workers and a set S c  of machines. Let 

N S S c,= . Let ,r i j 0$^ h  denote the revenue resulting from the assignment of worker i S!  to machine 

Sj c! . In general, when the firm  uses a set A  of workers and machines, the revenue u A^ h of these 

workers and machines to the firm is determined by the pairwise combinations of worker and machine that 

the members in A  can generate, and is given by

　 , ,,max r j k r j ku A r j k l l2 21 1 g+ += +^ ^ ^ ^h h h h$ .

with the maximum to be taken over all sets , , , , ,,j k j k j kl l1 1 2 2 g^ ^ ^h h h$ . of l  distinct worker-machine 

pairs in A . In this way, we have defined  the utility function :u 2 N "  IR. Shapley proves that this  utility 

function u  is supermodular w.r.t. any worker-machine pair but is submodular w.r.t. any machine-machine 

or worker-worker pair. Sun and Yang (2006) have sharpened his result as follows. As an example, this 

also illustrates the broad applicability of our new generalizations.

Theorem 2.9　　The defined utility function u  is a GM concave function.
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