
Abstract
Recently, in credit risk management, quantificationing the connection between the default probability 

and the recovery rate on macro economics becomes one of the most important problem. However, there 
has been no study of the relationship between the default timing and the recovery rate of a single 
company. In this paper, we model the default timinig and the recovery rate for the debt of a single 
company in the structural model.

1. Introduction
1.1 Literature Review
Developing the quantification of the default probability and the recovery rate is the most important 
problem for financial institutions and their supervisors. However, the connection between the default 
timing and the recovery rate of a single company is rarely considered in literatures, in this paper, we 
analyse it.

In the theoretical model for credit risk, there are two major models: the reduced form model and the 
structural model. The structural model, which is developed by Merton (1974), is one of the most popular 
model in credit risk studies.   In the Merton model,  the value of a company follows a stochastic process 
(geometric Brownian motion in Merton (1974)) and only if the stochastic process falls below the 
boundary at maturity, the default of the company occurs. In the Merton model, the recovery amount of the 
debt if the default occurs is mainly determinated the difference the value of company and the default 
boundary at maturity. Black and Cox (1976) extend the Merton model and they allow the occurrence of 
the default before the maturity. In fact, they assume that the value of a company follows a stochastic 
process (geometric Brownian motion in Black and Cox (1976)) and if the stochastic process falls below 
the boundary in the first time, the default of the company occurs. Therefore, the Black and Cox model is 
also called “first passage model”.
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In empirical studies of recovery rates for the debt of the defaulting companies, the cumulative 
recovery rate have the bimodal distribution. For the details on the recovery rates for the debt, see Asarnow 
and Edwards (1995), Hurt and Felsovalyi (1998), Araten, Jacobs Jr. and Varshney (2004), Franks, de 
Servigny and Davydenko (2004), Dermine and de Carvalho (2006), and Itoh and Yamashita (2008).

However, existent recovery models are not explained this phenomenon. We consider that one of the 
main causes, which the cumulative recovery rate is distributed bimodal, may be the difference of the 
default timing. If the default occurs early (for example, the asset of company is more than the debt), the 
recovery rate may be higher. On the other side, if the default occurs late, is the recovery rate (or total loss 
for lender) lower?

1.2 Summary
In this paper, using the structural model, we model the connection between the default timing and the 
recovery rate. Furthermore, we analyse the optimal default point for lender.

We explain our model briefly. We assume that default occurs in the framework of structural model 
and lender can observe the state of company only at the discrete points in structural model. Accordingly, 
the default occurs only at the discrete observable points. We consider three types of the default conditions: 
base default model, delay default model, and early default model. In the base default model, If the ability-
to-pay process becomes less than the debt, then the default occurs. The default structure of the base 
default model is the same as Hull and White (2001). In the delay default model, if the ability-to-pay 
process falls below the debt second consecutive time, then the default occurs. In the early default model, 
if the probability that the ability-to-pay process become less than the barrier at next observable point 
becomes more than a particular level, then the default occurs.

This paper is organized as follows. We introduce and derive the default probability and the recovery 
rate in the base default model in Section 2, those in the delay default model are given Section 3, and those 
in the early default model are shown in Section 4. In Section 5, we explain the numerical explain and in 
Section 6 we show the numerical results.

2. Base Default Model
In this section, we explain the base default model. Throughout this paper, we consider a single company.

Assumption 2.1. The amount of the loan for the company is D at time 0, and the maturity of the loan is 
time T .

Definition 2.2. Let Yt be the ability-to-pay process, which means the amount of paying the debt if the 
company is liquidated at time t ∈ [0, T ].

For example, Yt is considered as the value of the company plus the value of collateral.

Assumption 2.3. For t ∈ [0, T ], the ability-to-pay process follows geometric Brownian motion as follows,

dYt = µY Yt dt + σY Yt dWt .
 

(1)

where Wt is the Brownian motion. Moreover, we assume Y0 > D.
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We assume that if the default occurs, lender recovers the debt from the value of company and the 
collateral. Lender requires the retirement for the debt, when the amount of the ability-to-pay falls below 
the face value at the latest. In this situation, the timing of observating the ability-to-pay process is 
important matter for the recovery. There are two cases: continuous observation and discrete observation.

First, we explain continuous observation model. Under the Assumption 2.4, the structure of default is 
equivalent to that of Black and Cox (1976).

Assumption 2.4 (continuous observation). The lender can observe continuously ability-to-pay process. 
The default occurs, as the same time as the expected recovery falls below the face value as follows,

τC = inf {t > 0 : Yt < D} .

Next, we assume that the company value and the collateral value cannot be observed continuously 
but can be done discretely by lender. In particular, we assume that lender can only observe the company 
value and the collateral value at times 0 = t0, t1, t2, · · · , tM  = T.  Therefore, the default occurs discretely.  
Under the Assumption 2.5, the structure of default is similarly to that of Hull and White (2001). However, 
in Hull and White (2001), the ability-to-pay process does not follow geometric Brownian motion but it is 
normally distributed.

Assumption 2.5 (discrete observation). The lender can only observe the company value and the collateral 
value at times 0 = t0, t1, t2, , tM = T. The default occurs, when the ability-to-pay process is below the face 
value as follows,

τB = inf {t = t1, t2, · · · , tM : Yt < D} .

The expected value of the recovery rate R if the default occurs in [0, T] is given by,

 
(2)

Definition 2.6. ftm (x) is the probability that Ytm lies x and there has been no default prior to tm . We call it 
the survival function.

Using the transition density of geometric Brownian motion (for example, see Shreve (2004)), we have

The probability of occurrence of the default at tm is as follows,

 
(3)

where B− is (−∞, D].

71

06_Itoh_数式_英文40-1号_CS6.indd   71 2019/08/06   22:51:26



72（ 　  ） 横浜経営研究　第40巻　第 1 号（2019）

3. Delay Default Model
In this section, we explain the delay default model. We assume that lender can observe the ability-to-pay 
process only at discrete time points. Moreover, we assume that default occurs, not as soon as the ability-
to-pay process falls below the debt, but the ability-to-pay process falls below the debt second consecutive 
time. Therefore, in the delay default model, we distinguish between insolvent (defined as the company’s 
asset value falling below an insolvency barrier) and bankrupt (defined as legally declared inability to pay 
the debt).

Assumption 3.1. Yt can be observed only at M + 1 observable points 0 = t0, t1, t2, · · · , tM = T .

Assumption 3.2. For tm, m = 2, 3, · · · , M − 1, the default occurs if the ability-to-pay process falls below 
the amount of the debt for two consecutive observable points (that is at tm−1 and tm). At tM , that is maturity, 
the default occurs if the ability-to-pay process falls below the amount of the debt.

In the delay default model, for m = 2, 3, · · · , M − 1, the default time is defined as

3.1 Survival Function and Probability of Default
In this section, we derive the survival function and the probability of default under Assumption 3.2.

Definition 3.3. Let ϕtm－1tm (xm−1, xm) be the transition density of Yt from xm−1 at tm−1 to xm at tm as follows,

Definition 3.4. For m = 2, 3, · · · , M − 1, let ftm－2tm (xm) is the survival function, which is the probability 
that the company is survival in the interval (tm−2, tm] and that company value at tm is xm under the condition 
that the company is survival at tm−2.

Definition 3.5. Let B− = (−∞, D] be insolvency zone and B+ = (D, ∞) solvency zone.
Thus, under Assumption 3.2, if the ability-to-pay process falls into B− for two consecutive observable 

points, the default occurs. For m = 2, 3, · · · , M − 1,

 

(4)

Proposition 3.6. For m = 4, 5, · · · , M − 1 and xm ∈ B+, we have

and for xm ∈ B−, we have
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Proposition 3.7. We have

where for x2 ∈ B+,

and for x2 ∈ B−,

Proposition 3.8. We have

where for x3 ∈ B+,

and for x3 ∈ B−,

If we know x0 which is the value of the ability-to-pay at time 0, we can calculate ftm－1tm (xm), m = 4, 5, 
· · · , M − 1 from Proposition 3.6, Proposition 3.7, and Proposition 3.8.

3.2 Recovery Rate
Next, we derive the recovery size, if the default occurs at tm.
Proposition 3.9. For x2 ∈ B−, we have

For m = 3, 4, · · · , M − 1 and xm ∈ B−, we have
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Further, we have

Next, we derive the expected value of the recovery. If default occurs, expected value of the recovery is

Proposition 3.10. We have

for m = 3, 4, · · · , M − 1,

and

3.3 Probability of Default
In this section, we derive the probability of default. The probability function of default time is as follows, 
for m = 2,

and for m = 3, 4, · · · , M − 1,

 
(5)

We derive (5) the probability of default at tm.

Proposition 3.11. For m = 3, 4, · · · , M − 1, the probability of default at tm is

Moreover, the probability of default at tM is

4. Early Default Model
In this section, we consider earlier default than base model. For example, the lender can claim the early 
redeem of the debt by the safety covenants.
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Assumption 4.1. Yt can be observed only at M + 1 observable points 0 = t0, t1, t2, · · · , tM = T .

Assumption 4.2. For tm, m = 1, 2, · · ·, M − 1, the default occurs, as the same time as Yt falls below the 
face value. In addition, for tm, m  = 1, 2, · · ·, M − 1 if the company is suravival at tm−1 and Ytm > D, the 
default occurs as follows as soon as the probability, that the ability-to-pay process becomes the below D 
at tm+1, is less than α, the default is occurs where 0 < α < 1. At tM , that is maturity, the default occurs if the 
ability-to-pay process is below the amount of the debt.

Under Assumption 4.2, for m = 1, 2, · · · , M − 1, the default time is defined as

such that D＊(xtm ) > D meets

 
(6)

Similarly as (2), if the default occurs in [0, T], the recovery rate is given by,

 
(7)

5. Numerical Experiments
In this section, we explain the methods of calculating the probability distribution of the state of the 
company at default.

5.1 Base Default Model
For the purpose of calculating the state of company at default, if we calculate (3) straight, the multiple 
integral is required many computational time in the case where the observation points increase. Therefore, 
we discretize the increment of the ability-to-pay process in order to use the probability transition matrix.

Assumption 5.1. We discretize Yt by the rounding method, using right endpoint in span. We set upper 
bound of Yt  for convenience. For t = t1, t2, · · · , tM , we assume Yt ∈ {y1, · · · , yJ } where yJ is upper bound 
of Yt.

For the details on the rounding method, see Klugman, Panjer and Willmot (2004) and Itoh (2008).

Definition 5.2. Let yd = D be the debt value, ∃d ∈ [1, J]. It is the insolvency barrier.

Definition 5.3. Let Tm = tm − tm−1. For m = 1, 2, · · · , M and (i, j) ∈ {(1, 1) , (1, 2) , · · · , (J, J)}, let qyi
Tm (yj) 

be the probability transition density from yi at tm−1 to yj at tm. Moreover, let QTm be the transition matrix 
from tm−1 to tm as follows,

 
(8)
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From Assumption 2.3 and Assumption 5.1, for m = 1, 2, · · · , M, we obtain the probability transition 
density as follows,

where y0 = 0. Then, for m = 1, 2, · · · , M − 1, (8) is transformed into

If the initial debt amount is yi, the probability transition vector at t0 is given by

thus, the column vector whose i-th element is 1 and whose other elements are 0. Then, we have the 
probability transition vector at tM as follows,

 (9)

5.2 Delay Default Model
In this section, we present the probability transition matrix and probability transition vector in the delay 
default model.

In the base default model, if the ability-to-pay process falls the less or equal to the boundary, the 
default occurs and then the state of company is the only one (that is bankruptcy). In the delay default 
model, though the ability-to-pay process falls the less or equal to the boundary, the company may be in 
operation. In this section, we calculate the transition vector of the modified ability-to-pay process, which 
is the ability-to-process in the delay default model.

Definition 5.4.  Let Ŷ  be the modified ability-to-pay process. For t = t1, t2, · · · , tM−1, we assume
Ŷt  ∈ {y1, ỹ1, y2, ỹ2, · · · , yk , ỹk , yk+1 , · · · , yJ }. yi is the state that company is survived and that the amount 
of ability- to-pay is yi. ỹi is the state that the company is default and that the amount of ability-to-pay is yi . 
Moreover, let QTm be the transition matrix from tm−1 to tm as follows,
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From Assumption 3.2, for (i, j) ∈ {(1, 1), (1, 2), · · · , (J, J)}, the transition density of Ŷ  is obtain by,

Therefore, we have

Similarly as (9), the probability transition vector at tM is given by,

5.3 Early Default Model
In early default model, it is important to calculate the D＊ in (6). Using the least squares approach, we 
numerically calculate D＊ as follows,
 

(10)

Obtaining the D̂＊, we use “optim” command and “BFGS” option in R. The remaining calculation methods 
are the same as those of the base default model.

6. Numerical Results
In this section, we show the numerical results. For all calculation, we use R version 2.8.1. The probability 
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distributions of company value in base, delay, and early default model are shown by Figures 1, 2, and 3, 
respectively. The default probability, the expected cumulative recovery rates, and the expected cumulative 
loss rates of three models is shown 4, 5, and 6. The parameters are µ = 0.05, σ = 0.2, y0 = 12, D = 10, and 
the length between the two observable points  is 0.05 and the parameter of the early default model α is 0.3.
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Figure 1: Probability distribution of company’s value in base model,  
µ = 0.05, σ = 0.2, Y0 = 12, D = 10.

Figure  2:  Probability  distribution  of company’s value in delay 
default model,  µ  =  0.05, σ  =  0.2, Y0   = 12, D = 10. Grey area is 
the proba- bility distribution of company’s value in default.
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Figure 4: Default probability, µ = 0.05, σ = 0.2, Y0 = 12, D = 10, α = 0.3.

Figure 3: Probability  distribution of company’s value in early 
default model, µ =  0.05, σ  =  0.2, Y0  = 12, D = 10, α = 0.3.
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Figure 5: Expected cumulative recov- ery rates, µ = 0.05, σ = 0.2, 
Y0 = 12, D = 10, α = 0.3.

Figure 6: Expected cumulative loss rates,  µ  =  0.05, σ  =  0.2, Y0  = 12,  
D = 10, α = 0.3.
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