
Abstract
Two-player signaling games, where both players conceive uncertainty in the opponent’s strategic

choice, are examined. It is shown that equilibrium behavior largely depends on which update rule is

adopted. Updated by the Dempster-Fagin-Halpern rule, we never suffer such unreasonable behavior

on the equilibrium path as Ryan(2002) pointed out, and strategic uncertainty in hybrid or completely

mixed equilibria is observed. It is also examined that, this is not due to the existence of uncertainty, or

in a word, lack of confidence, but caused by the distinctive property of an update rule.

1 Introduction
Generalizing conventional solution concepts in games to conform to ambiguity or uncertainty

averse behavior is a subject of many research interests in recent years. In a conventional

setting of games, it is possible to incorporate various sources of uncertainty, such as

opponents’ strategic choices, private signals, the player set or the number of players, payoffs,

or the game tree itself. In such games with uncertainty, a foundation for Nash equilibria

would be weakened, since players may not have enough information or empirical trials to

reduce uncertainty to risk.

The main object of this article is to examine two-player extensive games with imperfect

information, where each player conceives uncertainty in the opponent’s strategic choice.

As for complete information games in a traditional sense, Dow and Werlang(1994) extend

the concept of a Nash equilibrium for two-player normal form games with uncertainty about

opponent’s choice. They also presented that, in the twice repeated prisoners’ dilemma game,

backward induction breaks down. In Eichberger and Kelsey(2000), the equilibrium notion of

Dow and Werlang(1994) is generalized to n-player normal form games. Furthermore, some

specific patterns of equilibrium behavior are characterized by means of a degree of
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confidence or ambiguity. Marinacchi(2000) extended the support for non-additive measures

in Dow and Werlang(1994) and examined an equilibrium in beliefs (see Crawford(1990)).

With regard to the multiple priors model, Lo(1999) proposed multiple priors Nash

equilibria in n-player finite extensive form games with complete information, where the

sources of uncertainty are all other player’s actions. As an update rule, the Dempster-Shafer

rule (Shafer(1976)) and the full Bayesian update rule are examined.

In Kajii and Ui(2005), which addresses incomplete information games with multiple priors,

players conceive ambiguity in signals they receive. As an update rule, the DS rule and the

Dempster-Fagin-Halpern update rule (Dempster(1967), Fagin and Halpern(1991)) are

incorporated, and the equilibrium notion based on mixed strategies and an equilibrium in

beliefs are proposed.

Eichberger and Kelsey(2004), which is largely concerned with the games examined here,

introduced a Dempster-Shafer equilibrium (DSE) that extends the notion of perfect Bayesian

equilibria so that players’ beliefs are represented by convex capacities with the DS updating.

As a support of a convex capacity, a support of Dow and Werlang(1994) is adopted.

This paper introduces an equilibrium notion with multiple priors, which is represented by a

convex capacity, which is called an equilibrium with multiple priors (EMP). There are three

features of EMP adopted here.

One is that, in our multiple priors setting, every player’s prior set is assumed to be

represented by a convex capacity. In an equilibrium with multiple priors presented here, even

if the lowest probability in some prior set is zero, the highest probability may not be zero,

there is room for some mixed strategy contained in this range.

As the second characteristic, it is assumed that any prior set is represented by a general

form of the convex capacity. Since convex capacities Eichberger and Kelsey(2004) adopted

are symmetric, therefore the updated belief set is easily reduced to a singleton, especially via

the DS rule. As illustrated in Section 4, it might conceal hybrid or completely mixed

equilibria.

The last one is that, as an update rule, the Dempster-Fagin-Halpern rule is introduced. As

Ryan(2002) pointed out, DSE has an interesting nature that, on the equilibrium path, some

reasonable beliefs are discarded. It will be proved, in some simple examples, this never

happens in EMP with the DFH rule. Therefore, the unreasonable behavior on the equilibrium

path, may happen not due to the existence of uncertainty, or in a word, lack of confidence, it

may be caused by the distinctive property of the update rule each player adopts.

This paper organized as follows: in Section 1, the signaling games and the basic definitions

are presented. Section 2 illustrates the basic setting, and in the following section the notion of

EMP is introduced and its existence is proved. Two simple signaling games are investigated

in Section 4, and the properties of EMP are examined.

2 The Basic Model
We begin with a signaling game [ ,( ) ,( ) , , ]G N S u Ti i N i i N= r! ! defined in the following. Let
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{ , }N 1 2= be the set of players. At the beginning of the game, Nature chooses a type of player

1 from a finite set { , , , }t t tT n1 2 f= , according to a probability distribution r on T. Player 1’s

type is private information, that is, player 2 dose not know which type of player 1 is. Every

player is to choose an action from Ai, a finite set of actions for each player ,i 1 2= . Let

A A A1 2#= . For future reference, let K be the index set of A1.

Let ( )XΔ be the set of all probability distributions on a finite set X . The aforementioned r

on T is a member of ( )TΔ . It is assumed that, throughout this paper, this r is commonly

known.

Player 1 may choose a type-dependent mixed action, so player 1’s strategy is a function 1v

from T to ( )A1Δ . Let S1 be the set of such strategies for player 1. Denote the probability

distribution on AT 1# induced by r and 1v , by ( , )p 1r v , which is a member of ( ).AT 1Δ # On

the other hand, player 2 chooses the action from A2 after observed the action of player 1.

Player 2’s strategy is a function from the observed action to a mixed action on A2, i.e. a

function 2v from A1 to ( )A2Δ . Let S2 be the set of all strategies of player 2.

As usual, let :u A Ti "# IR, ,i 1 2= represents player i’s payoff from any combination of

actions of two players and a type of player 1. For every type t of player 1, the expected utility

is denoted by 

( , , ) ( ) ( ) ( , , )U t a a u a a t .t t k k k

a Ak K

1 1 2 1 1 2 2 1 1 2

2 2

$ $=v v v v
!!

!!

It will be also useful below, the interim expected utility of every type t choosing a
k

1 is

( , , ) ( ) ( , , )U a t a u a a t .k k k

a A

1 1 2 2 2 1 1 2

2 2

$=v v
!

!

A belief of player 2 after a k

1
is observed, is expressed by ( ) .TΔ!t Given t, player 2’s

expected utility is denoted by 

( , ) ( | ) ( ) ( , , )U a t a a u a a t .k k k k k

a At T

2 1 2 1 2 2 2 1 2

2 2

$ $=v t v
!!

!!

The conventional equilibrium notion of G is a (weak) perfect Bayesian equilibrium, defined

as follows.

Definition 1 A perfect Bayesian equilibrium (PBE) of G is a set of strategies

[ , ] ( ) ,( )t
t

k
k K1 2 1 2T=v v v v

) ) ) )
! !: D and t satisfying:

(PB-1) player 1 of every type t in T chooses t
1

v
) such that 

, ,arg max U t .
( )

t

A

t
1 1 1 2t

1 1Δ
!v v v

) )

!v
b l

(PB-2) player 2 who observed every a k

1
in A1 chooses k

2
v such that, given a t
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,arg max U a .
( )

k

A

k k
2 2 1 2k

2 2Δ
!v v

)

!v
b l

(PB-3) For every a k

1
in A1,

|
( )

( )
>t a

a

a
if a 0.k

k

t k
k

T
1

1 1

1 1

1 1

T

=t
v

v
v

)

)

)

! !
x

x

x

x! !b bl l

3 Equilibrium with Multiple Priors
Now we assume that a player’s subjective ambiguous situation is summarized in the prior set.

In view of multiple-prior modelling where players confront subjective uncertainty about the

opponent’s mixed choice, it is assumed that the belief every player has is represented as an set

of beliefs which may not be a singleton.

In our setting of games, player 1 adopts a belief after played an action a k

1
in A1 about player

2’s behavior. Player 1’s belief is assumed to take the form of a non-empty, compact set of

probability measures on A2. More specifically, denote this player 1’s belief set for each k K!

by ( )AP
k
1 2Δ1 . As for player 2, priors about player 1’s types and behavior is a compact set of

probability measures on AT 1# , i.e. ( )AP T2 1Δ #1 .

To describe the ambiguous situation, we introduce non-additive measures, especially

convex capacities. Let Ω be the finite set of states and Σ is an algebra, 2Σ Ω= . A capacity

on Σ is a set function : [ , ]0 1Σ "n satisfying (i) ( ) 0Q =n and ( ) 1Ω =n , and (ii)

monotonicity: for every S and T in Σ such that S T1 , we have ( ) ( )S T#n n . A capacity n is

convex if for any S and T in Σ, ( ) ( ) ( ) ( )S T S T S T, + $+ +n n n n . n is called the conjugate

of n, which is defined as ( ) ( )S S1 Ω[/ -n n . Throughout this paper, it is assume that n is a

convex capacity.

Definition 2 P is represented by n if

{ ( )| ( ) ( )p X p S SP Δ! F= n for all }S X .1

When P is represented by n (i.e. the core of a convex capacity n), it is written as ( )P n . In

our setting of games, let k
1

n be defined on 2 A2 for every k K! and 2n be on 2 AT 1# . Then, we

write P k
1
, P2 represented by k

1
n , 2n as P k

1
na k, 2P n` j, respectively.

When player 2’s prior set P2 is given and a k

1
was observed, the prior set P2 is to be revised

according to this information, say ( )P T
k
2
Δ1 . Let Ф express an update rule that transforms

aP
k

2 1b l into P k
2
. It is assumed that P2 is represented by a convex capacity 2n , so P k

2
is

represented by a convex capacity k
2

n on 2T . Then Ф is characterized by the update rule for 2n ,

that is, ( ) ( )a aP P P
k k k

2 1 2 1 2
Ф8 =n n nb b al l k, which is also assumed throughout this paper.

Now the specification of G in the multiple-priors version is denoted by g,
g ,( ) ,( ) , , ,N S u T, ,i i i i1 2 1 2 Ф= r= =8 B. The following defines an equilibrium with multiple
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priors.

Definition 3 An equilibrium with multiple priors (EMP) of g is a set of strategies [ , ]
1 2

v v) ) and

prior sets ( ) ,P P
k

k K1 2!9 C satisfying the following conditions:

(MP-1) ( )AP
k
1 2Δ1 and ( )P P

k k
1 1

= n for every a k

1
in A1, and ( )AP T2 1Δ #1 and ( )P P2 2= n .

(MP-2) For every a Ak

1 1! , ( )P T
k
2
Δ1 and ( )P P

k k
2 2

= n where P k
2

is the posterior set updated

by Ф.

(MP-3) Player 1 of every type t in T chooses t
1

v ) such that if ( )>a 0
t k

1 1
v ) , then

( , , )arg max mina U a t .
( )

k

a A
1 1 1 2

P
k

1 1 2
1

! v
! !v n

R

T

S
SS

V

X

W
WW

(MP-4) If player 2 who observed every a k

1
in A1 chooses k

2
v ) such that

( , ) ,arg max min U a
( ) ( )

k

A

k

2 2 1 2
P

k
2 2

2
Δ

!v v)

! !v t n

R

T

S
SS

V

X

W
WW

(MP-5) 2( , ) ( )p P
1

!r nv) and ( )P
k k
2 1
! nv ) for any k K! .

Definition 4 An EMP agrees with the common prior r iff for every T T1 ,

2 ( ) ( ) ( )T A T A T .1
2

1# #= =n n r

This condition is proposed by Eichberger and Kelsey(2004), 2n ’s consistency with the

commonly known r.

Theorem 1 There exists an equilibrium with multiple priors of g which agrees with the

common prior r.

Proof At first, pick k
1

n , 2n specified as follows: for any k K! ,

( )
if

if
S

S A

S A

0

1
k
1

2

2

=
=

=
n

Y
* for every S A .21

For every S AT 1#1

( )
( )

( ) ( )T
S

S T A T

T S T A T A

0 if forany

if is the largest subset of such that

T

T
2

1

1 1

+ #

+ # #

Q 1
=

=

=r
n *

Obviously, every k
1

n and 2n are convex capacities. Hence each ( )P
k
1

n , 2( )P n is a non-empty,

compact, and convex subset of ( )A2Δ , ( )AT 1Δ # respectively.
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When every type t of player 1 chooses to play a Ak

1 1! , every type t has an probabilistic

assessment that player 2 reacts by choosing some mixed action ( )P
k k
2 1
! nv , the type t’s

interim payoff is:

, ,min U a t .
( )

k
1 1 2

P
k

2 1

v
!v n

b l

Let ( , , )K
1

1

1

1
f=n n n and ( )Bt

1 1n be the best response for type t defined as

( ) ( , , )arg max minB a U a t .
( ) ( )

t

A

t k k

k K
1 1 1 1 1 1 2

P
k

1 1 2 1
Δ

=n v v
! !

!
v v n

! b l

R

T

S
SS

V

X

W
WW

Since each , ,U a tk
1

1 2v` j is continuous in 2v and P k
1

n` j is a non-empty, compact, and convex

subset of ( )A2Δ and continuous in k
1

n , its minimum over P k
1

n` j is also continuous and

concave in k
1

n . Therefore ( )Bt

1 1n is non-empty, compact and convex valued and upper hemi-

continuous.

Player 1’s best response is denoted by

( ) ( )| , ({ }) , ( )B p A p t a t a B .T
k t k t t

1 1 1 1 1 1 1 1 1Δ # $! != =n r nv vb bl l( 2

( )B1 1n is also non-empty, compact and convex valued, and upper hemi-continuous, as ( )Bt

1 1n

is defined above and ( )TΔ!r is given.

Player 2 considers that, when a k

1
in A1 is observed, the posterior set ( )P

k
2

n is represented by

some updated convex capacity k

2
n on T according to Ф, therefore ( )P

k
2

n is a non-empty,

compact, and convex subset of ( )TΔ Now player 2’s best response is written as

( , ) ,arg max minB U a
( ) ( )

k

A

k
2

2
2 1 2

P
k

2 2
2

Δ
=n v

! !v t n
a k

R

T

S
SS

V

X

W
WW

which is also non-empty, upper hemi-continuous, and convex valued.

Now consider a mapping : ( ) ( ) ( ) ( )A A A AT T
K K

1 2 1 2Θ Δ Δ Δ Δ8# # # # such that

( , ) ( , ) ( )B B .k
1 2 1 2 1 1 2

2
k K

Θ8 #/ n nv v v v
!

% a k

R

T

S
SS

V

X

W
WW

( ) ( )A AT
K

1 2Δ Δ# # is compact and convex, since ( )AT 1Δ # and ( )A2Δ are compact and

convex. Θ is nonempty, compact and convex valued, and upper hemi-continuous, since

( )B1 1n and every ( )B k
2

2
n are. Therefore, applying Kakutani’s fixed point theorem, there exists

a ( , ) ( , )
1 2 1 2

Θ!v v v v) ) ) ) . Clearly, 2( , ) ( )p P
1

!r nv) and ( )P
k k
2 1
! nv ) for any k K! . □

There are various conditioning rules for a convex capacity, however, among them, we

particularly concentrate on two update rules, the Dempster-Shafer rule (DS rule) and the

Dempster-Fagin-Halpern rule (DFH rule).

Definition 5 For any event E Σ! such that ( )<E 1cn , the Dempster-Shafer update of n (the
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DS rule) E is

( )
( )

( ) ( )
S

E
S E E

for every S E
1

.E c

c c,
1=

-

-
n

n

n n

The Dempster-Fagin-Halpern rule is defined as follows.

Definition 6 For any event E Σ! such that ( )>E 0n , the Dempster-Fagin-Halpern update of

n (the DFH rule) conditional on E is

( ) ( ) ( )
( )

S S E S
S

for every S E.E [
1=

+
n

n n

n

It is well known that both DS and DFH rules preserves monotonicity and convexity.

In our context, the set of states is AT 1# , and player 2’s capacity is revised after observing

player 1’s action a k

1
, k K! , i.e. event { }aT

k

1
# was observed. The updated capacity

conditional on { }aT
k

1
# is denoted by k

2
n which is replaced by En above, and so k

2
n is on 2T.

Let g DS, g DFH be the game played by using the DS rule and DFH rule, respectively.

The following corollary illustrates that a perfect Bayesian equilibrium is also an

equilibrium of EMP in g DS or g DFH .

Corollary 2 There exists an equilibrium with multiple priors of g DS or g DFH which agrees

with the common prior r.

Proof. It is easily verified that, for every game g DS or g DFH , a perfect Bayesian equilibrium is

correspond to the case where ,p1 1
=n r v

)
b l and k k

2 2
=n v

) for every k K! , and both update

rules are conventional Bayes rule if each capacity is additive (a probability measure). Hence,

from the definition of a EMP, a perfect Bayesian equilibrium is a EMP which is agree with

the common prior r. □

4 Simple Examples
In this section, let us examine two simple signaling games with two types and actions.

4.1 Example with Strictly Dominant Strategy
In Eichberger and Kelsey(2004), the Dempster-Shafer equilibria (DSE) of some signaling

games are illustrated, and Ryan(2002) is discussing some properties of DSE in view of belief

persistence. Figure 1 is a typical example where, after the dominating action of player 1,

player 2’s updated belief seems to abandon some reasonable beliefs.

It is easily verified that this game has the separating perfect Bayesian equilibrium where

player 1 of type t1 plays L and type t2 plays R, and player 2 always chooses U .

Eichberger and Kelsey(2004) show that, under a high level of ambiguity, there exists a set

of beliefs which agrees with the prior distribution ( ( ), ( )) ( . , . )t t 0 5 0 51 2 =r r and constitutes a
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DSE such that player 2 chooses D in response to L and R.

EMP with the DS rule also includes {( , ),( , )}L R D D , however, using the DFH rule, there is

no EMP other than {( , ),( , )}L R U U . It suggests that the emergence of {( , ),( , )}L R D D as an

EMP is not due to the degree of ambiguity, but due to the property of the update rule

employed.

The following claim states that, it does not depend on the magnitude of payoff x shown in

Figure 1.

Claim 1 In the example in Figure 1, for any >x 1, there is no EMP with the DFH rule other

than {( , ),( , )}L R U U .

Proof. Suppose that player 2’s prior capacity 
2n is given as following:

2 2

2 2

2

({( , )}) , ({( , )})

({( , )}) , ({( , )})

t L t R

t L t R

2 2

2 2

1
1

1
2

2

1

2

= =

= =

n
a

n
a

n
b

n
b

2 2({( , ),( , )}) , ({( , ),( , )})t L t R t L t R
2
1

2
1

1 1 2 2= =n n

Figure1: An example in Eichberger and Kelsey(2004) and Ryan(2002).
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2 2

2 2

({( , ),( , ),( , )}) , ({( , ),( , ),( , )})

({( , ),( , ),( , )}) , ({( , ),( , ),( , )})

t L t R t R t R t L t R

t L t R t L t L t L t R

2
1

2
1

2
1

2
1

1 1 2
3

1 2 2
3

1 1 2
4

1 2 2
4

=
+

=
+

=
+

=
+

b

b

n n
a

n n
a

2 ( )A 1.T 1# =n

This 2n agrees with r. Convexity of 2n requires that

1 2

3 2

4 1

,

,

,

1 1

.

1 2

3 2

4 1

　 　# #

$ $

$ $

+ +a a b b

a a b b

a a b b

When player 2 observes L is played, DFH update for 2n yields

2 2

2
( ) ({( , )}) ({( , ),( , ),( , )})

({( , )})

/

/

t t L t L t R t R
t L

1

2 1
2

1
2

1

L
2

1
1 1 1 2

1

1

3

1

1 3

1

=
+ -

=

+ -
+

=
+ -a

n
n n

n

a
b

a
b

a

2

1

1

1

1

( ) ({( , )}) ({( , ),( , ),( , )})
({( , )})

/

/

t t L t R t L t R
t L

1

2 1
2

1

2

1

L
2

2
2 2 2 1 2 2

2

3 3

=
+ -

=
+ -

+
=

+ -

n
n n

n

b
a

b

b a

b

Playing U gives player 2 the certain payoff 1, and playing D yields 0 if player 1 is type t1 and

x if type t2, therefore player 2’s minimum payoff will be 
1

1x
1 3+ -b a

b
. Playing D is the best

response if

1

1

1

x

x

1
1

1
1

, or
3

3

$

$

+ -

-
-

b a

b

b
a

（1）

On the other hand, suppose that R is observed. In this case, 

4 4

( ) ({( , )}) ({( , ),( , ),( , )})
({( , )})

/

/

t t R t L t R t L
t R

1

2 1
2

1
2

1

R
2

1
1 1 1 1 1 2

1 1

2

2

2

2

=
+ -

=

+ -
+

=
+ -

n
n n

n

a
b

a
a b

a

2

2

2

2

( ) ({( , )}) ({( , ),( , ),( , )})
({( , )})

/

/

t t R t L t L t R
t R

1

2 1
2

1

2

1
.

R
2

2
1 2 1 1 2 2

1 2

4 4

=
+ -

=
+ -

+
=

+ -

n
n n

n

b
a

b

b a

b

Playing U gives player 2 the certain payoff 1, and playing D yields x if player 1 is type t1 and
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0 if type t2, therefore player 2’s minimum payoff will be x
12 4

2

+ -a b
a . Playing D is the best

response if 

4

4 ( )

x

x

1
1

1 1

,or
2

2

2

$

$

+ -

- - +

a b
a

b a
（2）

Consider player 1’s choice. Playing L for t1 and R for t2 are strictly dominant strategies,

Playing ( , )L R (pure actions) should be included in player 2’s prior set, i.e., 

2

2

({( , )}) , ({( , )})

({( , )}) , ({( , )}) ,

t L t R

t L t R

2
1 0

0
2
1

2
1 1

2
2

2

　

　

= =

= =

n n

n n

hence 02 3= =a a and 4 01= =b b . However, to have D as the best response, (1) and (2) requires

that /( )x1 11$ -b and 4 1=b , so ( , )D D cannot be supported as an EMP. This result is

independent of the magnitude of x. □

4.2 Example of Hybrid Equilibrium
Let us now consider the following signaling game in Figure 2.

This game has a pooling and a separating perfect Bayesian equilibria:

player 1: type t1 plays R and type t2 plays L
(S) *

player 2: plays U in response to L and R

player 1: both types plays L

(P)

Z

[

\

]]

]]
player 2: plays U in response to L and plays D in response R

with any belief ( | ) /t R 2 31 #t

4.2.1 EMP with the DS rule
It is well known that a posterior set updated by the DS rule is smaller than the DFH rule

(Denneberg(1994)). Especially, a two-states symmetric capacity revised by the DS rule

becomes additive. In this case, any hybrid EMP might disappear. This is easily verified as

follows. Suppose that, type t1 chooses a mixed action and type t2 chooses L. When R is

observed, player 2 believes that the player 1 is t1 correctly, hence player 2 never chooses

mixed action. However it dose not happen in EMP with the DFH rule.

4.2.2 EMP with the DFH rule
Completely mixed equilibrium With the DFH rule, the game in Figure 2 has a completely

mixed equilibrium if every type of player 1 is also uncertainty averse player who has non-

degenerated prior set.

To see this, suppose that every type of player 1 is the expected utility maximizer and

mixing the actions. Then, both types are indifferent between L and R, so player 2 plays U with
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probability of pL after observing L, and plays D with probability of pR after R. For type t2 to

be indifferent between L and R, we have to have /p 1 2L = , however the condition for type t1 is

that ( )p p p4 1 2L L R+ - = . /p 1 2L = cannot satisfy this requirement, hence there is no

completely mixed equilibrium in this case.

The uncertainty averse behavior of player 1 drastically alternates this situation. Now

suppose that player 1 is also uncertainty averse. Player 1’s belief sets are denoted by ( )P
a
1

n ,

,a L R= :

( ) , ( ) ,

( ) , ( ) ,

U a D b

U a D b

L L

R R

1
1

1
1

1
2

1
2

　 　

　 　

= =

= =

n n

n n

where a b 11 1#+ and a b 12 2 #+ . Calculating the CEU from every action leads to the following

conditions:

t a b

t a

2
1 3

2
1

:

:

type

type

1 2
1

2 1

　 　

　 　

= +

=

where /b 1 31# . Although we may choose any parameters satisfying these conditions, consider

the following case 

( ) / , ( ) / ,

( ) / , ( ) /

U D

U D

1 2 1 6

4 3 1 6.

L L

R R

1 1

1 1

　 　= =

= =

n n

n n

Now suppose that, in the equilibrium, type t1 is mixing with a probability of q1 and type t2



横浜経営研究　第28巻　第１号（2007）114（ 114 ）

with a probability of q2. Player 2’s indifferent conditions are calculated by updated capacities:

L is observed :
1

1

1

1

1

4

1

2 1

3 3

3

+ -
=

+ -

+ -

b a

b

b a

b a

R is observed :
4 2

2

1 12

2

4+ -
=

+ -a b
a

b a

b

These are reduced to 

1 2
1 3=

-
b

a （3）

2 4( ) ( ),1 12 4- = -a a b b （4）
which are also compatible with convexity requirements.

To illustrate this equilibrium, set 1 /1 8=b and /3 43 =a satisfying (3), and /1 22 =a , 04 =a ,

/1 32 =b , and 4 /1 4=b satisfying (4). The consistency of belief sets implies that the probability

distribution generated by ( , )q q1 2 and ( / , / )1 2 1 2=r have to be contained in ,P2 we have 

/ / /

/ / /

q q

q q

0 1 4 1 2 2 3

3 4 1 1 1 3 1 1 2

and

and

, or1 2

1 2

# # # #

# # # #- -

On the other hand, the updated belief set for player 2 is now:

( ) , ( ) /

( ) / , ( )

( ) / , ( ) /

( ) / , ( ) /

t t

t t

t t

t t

0 3 7

4 7 1

2 5 3 4

1 4 3 5.

L L

L L

R R

R R

2
1

2
1

2
2

2
2

2
1

2
1

2
2

2
2

　 　= =

= =

= =

= =

n n

n n

n n

n n

When p’s marginal distribution is calculated as:

( ) ( )

( ) ( )

q q
q

q q
q

q q
q

q q
q

0
11
3

3
2 1

5
3

1 1
1

4
3

4
1

1 1
1

5
2

1 2

1

1 2

2

1 2

1

1 2

2

# #

# #

# #

# #

+

+

- + -
-

- + -
-

It is verified that these range is also contained in updated belief sets.

The existence of a completely mixed equilibrium suggests that there is also a set of hybrid

equilibria even if player 1 is the expected utility maximizer.

Hybrid Equilibrium Consider the following strategy of player 1, type t1 is mixing L and R,

type t2 choose the pure action L.

Then, 2 0=b and 3 0=b .
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Suppose that player 2 observed R. Then, 2’s updated belief set is represented as:

4

4

4

,

,

( ) ( )

( ) ( )

t t

t t

1
0

1
1

1

.

.

R R

R R

2
1

2

2

2
2

2
1

2
2

2

　 　=
+ -

=

= =
+ -

-

n
a b

a
n

n n
a b

b

Given these beliefs, so that player 2 chooses mix strategy, the CEU from U and D have to be

equal:

41
0 0.

2

2
2&

+ -
= =

a b
a

a

Suppose player 2 chooses U with probability q. Then, type t1 is indifferent between L and R if

q
2
1= .

On the other hand, suppose that player 2 observed L. Then, player 2’s updated belief set is

given as:

1

1

1

( ) ( )

( ) ( )

t t

t t

1 1

1
1

1
1

.

.

,

,

L L

L L

2
1

1

1

2
2

3

2
1

3

3

2
2

1

=
+

=
+ -

=
+ -
-

=
+

n
a
a

n
b a

b

n
b a

a
n

a

The consistency requirement for belief sets gives ( )t 1L
2

2 =n , i.e. 01=a . Given this beliefs, the

CEU is:

play U :
1

1

1

4

3+ -b a

b

play D : 1

Therefore, when 1 3
1 3$

-
b

a , player 2 chooses to play U , which is conformable to player 1’s

choice.

Therefore, to summing up,

4 1 1, , , ,0 0
3

1and1 2 4 2 3
3$ $= = = = =

-
a a a b b b b b

a

which supports the hybrid EMP.

5 Concluding Remarks
Equilibria with multiple priors examined in this paper are strongly influenced by the choice of

an update rule and the representation of initial priors, i.e. forms of convex capacities. To

minimize the lack of robustness, adopting the general form of capacities would be

recommended, especially in making use of the Dempster-Shafer rule.

It is also shown that, in general, some equilibrium behavior other than Nash equilibria
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appears, such as hybrid or complete mixed equilibria. The notion of EMP might gives some

foundation for such behavior actually observed in real economic situations, and enriches the

patterns of equilibrium behavior to explain them in proper applications. However, in view of

theoretical justifications, the EMP might considerably broaden the set of equilibria beyond

Nash equilibria. In this sense, some kind of the selection mechanism for EMP would be

needed for reinforcement.
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